Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.840
Filtrar
1.
Sci Rep ; 14(1): 9421, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658602

RESUMO

This study aimed to optimize pyrolysis conditions to maximize bio-oil yield from cattle dung, a waste product of livestock practices. Pyrolysis of cattle dung was carried out in batch type reactor. The pyrolysis process was optimized using a central composite design in response surface methodology, with conversion parameters such as pyrolysis temperature, vapor cooling temperature, residence time, and gas flow rate taken into account. The cattle dung bio-oil was analyzed using gas chromatography/mass spectroscopy (GC/MS), an elemental analyzer, a pH probe, and a bomb calorimeter. Furthermore, the ASTM standard procedures were used to determine the bio-fuel characteristics. The optimized conditions were found to be a pyrolysis temperature of 402 °C, a vapor cooling temperature of 2.25 °C, a residence time of 30.72 min, and a gas flow rate of 1.81 l min-1, resulting in a maximum bio-oil yield of 18.9%. According to the findings, the yield of bio-oil was predominantly affected by pyrolysis temperature and vapor cooling temperature. Moreover, the bio-oil that was retrieved was discovered to be similar to conventional liquid fuels in numerous ways.


Assuntos
Biocombustíveis , Pirólise , Animais , Bovinos , Biocombustíveis/análise , Cromatografia Gasosa-Espectrometria de Massas , Esterco/análise , Temperatura , Temperatura Alta , Fezes/química
2.
J Environ Manage ; 357: 120844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579469

RESUMO

The incineration of poultry litter (PL) effectively reduces the volume of waste in line with the United Nations Sustainable Development Goal of "affordable and clean energy". However, mono-incineration is associated with considerable challenges due to the varying moisture, structural and chemical composition and low energy yield. The aim of the present work was to investigate the influence of sweet sorghum bagasse (SS) and pyrolysis oil (PO) on improving the fuel properties of PL and mitigating ash related burdens during incineration. The different biomass feedstocks were produced by combining PL with SS at 0.0% (T0), 25% (T1), 50% (T2), 75% (T3) and compared with 100% SS (T4). In order to achieve high energy potential and low ash deposition, the parallel samples were additionally mixed with 10% PO to improve the energy value. The experimental results show that increasing the proportion of SS and adding PO to the mixtures increases the volatile matter and decreases the moisture and ash content. The addition of PO also increases the carbon and hydrogen content. The use of SS and PO thus increased the values of the ignitability index and apparently also the flammability by 30.0%-49.4% compared to pure PL. SS and PO shifted the HHV of the starting material from 16.90 to 18.78 MJ kg-1. In addition, SS + PO improved the flame volume and red color intensity of the PL blends based on the image analysis method. However, the presence of SS and PO did not sufficiently improve the ash-related index values, which requires further investigation.


Assuntos
Celulose , Aves Domésticas , Sorghum , Animais , Pirólise , Incineração/métodos
3.
J Environ Manage ; 357: 120835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581897

RESUMO

Euphorbia Rigida (E. Rigida), a lignocellulosic biomass with low ash content, is a suitable feedstock for pyrolysis. This work investigated the physicochemical characteristics and thermokinetic analysis of E. Rigida pyrolysis by using isoconversional and master plots methods. Ultimate and proximate analyses and oxygen bomb calorimeter were used to determine the physicochemical parameters. The activation energies were calculated using model-free methods (KAS, Friedman and Starink) and were found as 184, 178 and 185 kJ/mol, respectively. Using Fraser-Suzuki deconvolution, pseudo-components were also calculated and the active pyrolysis region was divided into three zones. The master plots showed that reaction order mechanisms (Fn) were effective in Zone I, and diffusion mechanisms (Dn) were well matched in Zone II and Zone III. The thermodynamic parameters (ΔH, ΔG and ΔS) were calculated and according to these results, E. Rigida pyrolysis was an endothermic and non-spontaneous process.


Assuntos
Euphorbia , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Termodinâmica , Cinética , Biomassa
4.
Anal Chem ; 96(15): 6037-6044, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560885

RESUMO

Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine ß-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA ß-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA ß-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 µM, and its limit of detection was 0.03 µM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.


Assuntos
Dopamina , Oxigenases de Função Mista , Dopamina/química , Fenol , Biomimética , Cobre , Plásticos , Pirólise , Eletrodos , Neurotransmissores , Técnicas Eletroquímicas/métodos
5.
Sci Rep ; 14(1): 5692, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453974

RESUMO

Current agricultural practices are increasingly favoring the biochar application to sequester carbon, enhance crop growth, and mitigate various environmental pollutants resulting from nitrogen (N) loss. However, since biochar's characteristics can vary depending on pyrolysis conditions, it is essential to determine the optimal standard, as they can have different effects on soil health. In this study, we categorized rice husk biochars basis on their pH levels and investigated the role of each rice husk biochar in reducing ammonia (NH3) emissions and promoting the growth of Chinese cabbage in urea-fertilized fields. The findings of this study revealed that the variation in pyrolysis conditions of rice husk biochars and N rates affected both the NH3 emissions and crop growth. The neutral (pH 7.10) biochar exhibited effective NH3 volatilization reduction, attributed to its high surface area (6.49 m2 g-1), outperforming the acidic (pH 6.10) and basic (pH 11.01) biochars, particularly under high N rates (640 kg N ha-1). Chinese cabbage yield was highest, reaching 4.00 kg plant-1, with the basic biochar application with high N rates. Therefore, the neutral rice husk biochar effectively mitigate the NH3 emissions from urea-treated fields, while the agronomic performance of Chinese cabbage enhanced in all biochar amendments.


Assuntos
Oryza , Solo , Amônia/análise , Ureia , Temperatura , Pirólise , Carvão Vegetal
6.
Environ Sci Pollut Res Int ; 31(18): 26497-26509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446296

RESUMO

The increase in plastic products and disposal poses a severe environmental challenge because of their poor biodegradability and undesirable disposal by landfilling. Recycling is the best possible solution to the environmental challenges implemented by the plastic industry. Pyrolysis is a process that converts waste plastics into pyrolytic oil, and it can be used as fuel in a blended form. The viscosity and lubricity of the LDWP (low-density waste polyethylene) pyrolytic oil were lower than standard diesel. Capparis spinosa methyl ester (CME) is blended and experimented with to overcome the lubricity issue of pyrolytic oil. In this investigation, 5%, 10%, and 15% CME were blended with PD20 (20% LDWP oil + 80% diesel) blend on a volume basis. Experiments were conducted to examine the effects of CME on combustion, performance, and emissions using the combination of CME and PD20 blend tested at 0%, 25%, 50%, 75%, and 100% loading conditions. All three ternary mixtures showed enhanced combustion performance and increased NOx and smoke emissions. Due to better combustion, the efficiency of the blend PCD10 (10% CME + 20% LDWP oil + 70% diesel) was higher than the PD20 blend and significantly closer to diesel. Hence, PCD10 is suggested as an alternative to diesel fuel.


Assuntos
Plásticos , Pirólise , Reciclagem
7.
Environ Pollut ; 348: 123820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527583

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have been suspected as contaminants in various foodstuffs, including salts, all over the world. Regarding the different sizes and polymer types, the mass concentrations of actual plastic particles in salt are not very clear. The purpose of this study is to develop a scalable method for qualitative and quantitative analysis of MPs and NPs by using Pyrolysis Gas Chromatography Quadrupole-Time of Flight mass spectrometry (Py-GC/QTOFMS) to detect their mass concentrations in salt samples. The targeted and suspected lists of polymers in salts were compiled based on the combined results of the high-resolution mass spectrometry (HRMS) full scanning with auxiliary MS dataset and the laser direct infrared (LDIR) chemical imaging analysis. The seven targeted MPs with polymer standards, i.e., polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polycarbonate (PC), were first subjected to a full MS scanning mode of the Py-GC/QTOFMS analysis. Subsequently, the parental masses of their pyrolysis compounds were used as the seeds to generate the related daughter masses. This process established both retention time and mass-pairs matching for the target MS/MS mode for enabling the identification and quantification of the particles. The suspected MPs with a matching degree >0.65 in the LDIR list were explored either by the full scan MS. Only PVC was identified, and PET was suspected. The Py-GC/QTOFMS result is complementary and comparable to the LDIR detection with the matching degree >0.85. We identified that PVC and PET (suspected) can be measured in both commercial and bulk sea salts, and their concentrations in sea salts are much higher than in rock salts, implying heavy contamination of the seawater.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Sais , Pirólise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polímeros/química , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 348: 123886, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556153

RESUMO

Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.


Assuntos
Ferro , Poluentes Químicos da Água , Temperatura , Adsorção , Pirólise , Carvão Vegetal , Tetraciclina , Antibacterianos , Água , Hidróxidos , Poluentes Químicos da Água/análise , Cinética
9.
Environ Pollut ; 348: 123867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556151

RESUMO

A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.


Assuntos
Matéria Orgânica Dissolvida , Pirólise , Temperatura , Peso Molecular , Carvão Vegetal/química , Substâncias Húmicas/análise , Proteínas , Preparações Farmacêuticas
10.
Int J Biol Macromol ; 265(Pt 2): 131093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521306

RESUMO

The hierarchical and heterogeneous structures and the interactions between biomass components within cell walls are closely related to the pyrolysis characteristics. In this work, thermogravimetric analysis (TGA) and pyrolysis kinetics analysis were used to investigate the pyrolysis characteristics of windmill palm (Trachycarpus fortunei (Hook.) H. Wendl.) culm and silk after delignification. The results demonstrate cellulose pyrolysis temperature of silk is much higher than that of culm, attributed to the higher lignin content of the former. After delignification, the cellulose pyrolysis temperature of silk decreased by 48 °C, which is much higher than that of culm by 18 °C, suggesting a strong interaction between lignin and cellulose during the pyrolysis process. Futhermore, pyrolysis kinetics analysis also found that the frequency factor of slik and culm increased by 129 % and 26 %, respectively, attributed to the disappearance of the carbon layer formed by lignin pyrolysis process. And, differ in lignin content is responsible for the discrepancy of frequency factor increase. In conclusion, we propose a mechanism model for lignin hindering cellulose pyrolysis, which is of great significance for understanding the pyrolysis interactions of biomass components in complex supramolecular cell wall.


Assuntos
Celulose , Lignina , Celulose/química , Lignina/química , Pirólise , Termogravimetria , Temperatura , Biomassa , Cinética
11.
Chemosphere ; 355: 141599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548079

RESUMO

Several activities such as aquaculture, human and feedstock therapies can directly release antibiotics into water. Due to high stability, low hydrolysis and non-biodegradation, they can accumulate in the aqueous environment and transport to aquatic species. Here, we synthesized amine-functionalized porous carbons (ANC) by a direct-pyrolysis process of NH2-MIL-53(Al) as a sacrificial template at between 600 and 900 °C and utilized them to eliminate chloramphenicol antibiotic from water. The NH2-MIL-53(Al)-derived porous carbons obtained high surface areas (304.7-1600 m2 g-1) and chloramphenicol adsorption capacities (148.3-261.5 mg g-1). Several factors such as hydrogen bonding, Yoshida hydrogen bonding, and π-π interaction, hydrophobic interaction possibly controlled adsorption mechanisms. The ANC800 could be reused four cycles along with high stability in structure. As a result, NH2-MIL-53(Al)-derived porous carbons are recommended as recyclable and efficient adsorbents to the treatment of antibiotics in water.


Assuntos
Cloranfenicol , Pirólise , Humanos , Temperatura , Adsorção , Porosidade , Antibacterianos/química , Carbono/química , Água/química
12.
Chemosphere ; 355: 141715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554861

RESUMO

This study evaluates pyrolysis products obtained from biomasses (silver grass, pine, and acacia) harvested from heavy-metal-contaminated soil. To do so, we utilized two methods: a batch one-stage pyrolysis, and a continuous two-stage pyrolysis. The study results show that the yields and characteristics of bio-oils and biochars varied depending on the pyrolysis process and the type of biomass. The two-stage pyrolysis having two reactors (auger and fluidized bed reactors) appeared to be very suitable for specific chemicals production such as acetic acid, acetol, catechol, and levoglucosan. The biochar obtained from the fluidized-bed reactor of two-stage pyrolysis had high thermal stability, high crystallinity, high inorganic content, and a small number of functional groups. In contrast, the biochar obtained from the one-stage pyrolysis had low thermal stability, low crystallinity, a high carbon content, and a large number of functional groups. The biochar obtained from the two-stage pyrolysis appeared to be suitable as a material for catalyst support and as an adsorbent. The biochar obtained from one-stage pyrolysis appeared to be a suitable as a soil amendment, as an adsorbent, and as a precursor of activated carbon. All biochars showed a negative carbon footprint. In the end, this study, which was conducted using two different processes, was able to obtain the fact that products of pyrolysis biomass contaminated with heavy metals have different characteristics depending on the process characteristics and that their utilization plans are different accordingly. If the optimal utilization method proposed through this study is found, pyrolysis will be able to gain importance as an effective treatment method for biomass contaminated with heavy metals.


Assuntos
Metais Pesados , Pirólise , Biomassa , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Óleos
13.
Chemosphere ; 354: 141689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492677

RESUMO

Quantitative studies of nanoplastics (NPs) abundance on agricultural crops are crucial for understanding the environmental impact and potential health risks of NPs. However, the actual extent of NP contamination in different crops remains unclear, and therefore insufficient quantitative data are available for adequate exposure assessments. Herein, a method with nitric acid digestion, multiple organic extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was used to determine the chemical composition and mass concentration of NPs in different crops (cowpea, flowering cabbage, rutabagas, and chieh-qua). Recoveries of 74.2-109.3% were obtained for different NPs in standard products (N = 6, RSD <9.6%). The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.02-0.5 µg and 0.06-1.5 µg, respectively. The detection method for NPs exhibited good external calibration curves and linearity with 0.99. The results showed that poly (vinylchloride) (PVC), poly (ethylene terephthalate) (PET), polyethylene (PE), and polyadiohexylenediamine (PA66) NPs could be detected in crop samples, although the accumulation levels associated with the various crops varied significantly. PVC (N.D.-954.3 mg kg-1, dry weight (DW)) and PE (101.3-462.9 mg kg-1, DW) NPs were the dominant components in the samples of all four crop species, while high levels of PET (414.3-1430.1 mg kg-1, DW) NPs were detected in cowpea samples. Furthermore, there were notable differences in the accumulation levels of various edible crop parts, such as stems (60.2%) > leaves (39.8%) in flowering cabbage samples and peas (58.8%) > pods (41.2%) in cowpea samples. This study revealed the actual extent of NP contamination in different types of crops and provided crucial reference data for future research.


Assuntos
Microplásticos , Pirólise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Limite de Detecção , Produtos Agrícolas
14.
Chemosphere ; 354: 141740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508460

RESUMO

The contribution of excavated waste to waste management is multifaceted, including minimization, non-hazardous disposal, access to useable land resources, improved waste management techniques and public environmental awareness, consistent with recent circular economy initiatives. Pyrolysis can be converted into tar, pyrolysis gas and char with recyclable utilization, enriching the application of pyrolysis technology in the field of excavation waste. In this study, the pyrolysis system includes horizontal tube furnace, gas collection device and Micro GC. The excavated waste was pyrolyzed at a temperature of 500∼900 °C with a heating rate of 10 °C/min. Pyrolysis gases include H2, CO, CO2, CH4, C2H4, C2H6 and C3H8. Pyrolysis was divided into four stages, the main decomposition range is 230∼500 °C, with a weight loss rate of 68.49% and a co-pyrolysis behavior. As the temperature increases, the tar and char decreased and the gas production increased significantly, and the pyrolysis gas reached 47.02% at 900 °C. According to Pearson correlation coefficient analysis, the generation of H2 and CO is positively correlated with temperature. Therefore, the target products can be influenced by changing the parameters, when considering the practical utilization of the excavated waste pyrolysis products. On this basis, the prediction models were built by polynomial fitting method. This model can reduce the experimental exploration cycle, reduce the cost, and accurately predict the pyrolysis gas, which has practical guidance for the application of pyrolysis industry, and provides a theoretical basis for the resource recycling and energy recovery of landfill.


Assuntos
Pirólise , Gerenciamento de Resíduos , Gases/análise , Gerenciamento de Resíduos/métodos , Instalações de Eliminação de Resíduos , Reciclagem , Resíduos/análise
15.
J Hazard Mater ; 469: 134097, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518692

RESUMO

In this study, municipal waste pyrolytic char (PEWC) was prepared by pyrolysis from municipal solid waste extracted in landfills, and Fe-based modified pyrolytic char (Fe-PEWC) was prepared by modification. Focusing on the evaluation of the stabilization capacity of Fe-PEWC for vanadium (V) and chromium (Cr) in soils, the effects of PEWC addition on soil properties, bioavailability and morphological distribution of V and Cr, ryegrass growth, and V and Cr accumulation were thoroughly investigated. The results of pot experiment showed that the application of PEWC and Fe-PEWC significantly (P < 0.05) improved soil properties (such as pH, EC, total nitrogen, available phosphorus, available potassium, and organic matter). After 42 days of cultivation, Fe-PEWC has a better fixation effect on heavy metals, and the bioavailable V and Cr of 3% Fe-PEWC decreased by 14.96% and 19.48%, respectively. The exchangeable state and reducible state decreased, while the oxidizable state and residual state increased to varying degrees. The Fe-PEWC can effectively reduce the accumulation of V and Cr in ryegrass by 71.25% and 76.43%, respectively, thereby reducing their toxicity to plants. In summary, modified pyrolytic char can effectively solidify heavy metals in soil, improve soil ecology and reduce the toxicity to plants. The use of excavated waste as a raw material for the preparation of soil heavy metal curing agent has the significance of resource recycling, low price, and practical application.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cromo , Pirólise , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química
16.
J Environ Manage ; 356: 120747, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537473

RESUMO

Increasing amounts of solid waste and sludge have created many environmental management problems. Pyrolysis can effectively reduce the volume of solid waste and sludge, but there is still the problem of heavy metal contamination, which limits the application of pyrolysis in environmental management. The intercalated-exfoliated modified vermiculite (IEMV) by intercalators of sodium dodecylbenzene sulfonate, hexadecyltrimethylammonium bromide and octadecyltrimethylammonium bromide were used to control the release of Cd, Cr, Cu, Zn and Pb during pyrolysis process of sludge or solid waste. The retention of heavy metals in sludge was generally better than that in solid waste. The IEMV by octadecyltrimethylammonium bromide as the intercalator calcined 800 °C (STAB-800) was the best additive for heavy metal retention, and the retention of Cr, Cu and Zn was significantly better than that of Pb and Cd. Cr, Cu, Zn and Pb were at low risk, while Cd had considerable risk under certain circumstances. New models were proposed to comprehensively evaluate the results of the risk and forms of heavy metals, and the increasing temperature was beneficial in reducing the hazards of heavy metals by the addition of STAB-800. The reaction mechanism of heavy metals with vermiculite was revealed by simulation of reaction sites, Fukui Function and Frontier Molecular Orbital. Thermal activation-intercalated-exfoliated modified vermiculite (T-IEMV) is more reactive and had more active sites for heavy metals. Mg atoms and outermost O atoms are the main atoms for T-IEMV to react with heavy metals. The Cr, Cu and Zn have better adsorption capacity by T-IEMV than Pb and Cd. This study provides a new insight into managing solid waste and sludge and controlling heavy metal environmental pollution.


Assuntos
Alcanos , Silicatos de Alumínio , Metais Pesados , Compostos de Amônio Quaternário , Esgotos , Esgotos/química , Resíduos Sólidos , Pirólise , Cádmio , Chumbo , Metais Pesados/química
17.
J Hazard Mater ; 469: 133855, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428296

RESUMO

Microplastics are ubiquitous in the environment. Human body can be exposed to microplastics through inhalation and ingestion and some microplastics can enter the blood and accumulate in various tissues and organs throughout the body. Animal experiments have suggested that microplastics may promote atherosclerosis. However, data on microplastics in human arteries and clinical evidence supporting a link between microplastics and atherosclerosis are currently lacking. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used in this study to detect microplastics in three types of human arteries: coronary and carotid arteries with atherosclerotic plaques, as well as the aorta without plaques. Microplastics were detected in all 17 arterial samples, with an average concentration of 118.66 ± 53.87 µg/g tissue. Four types of microplastics were identified: polyethylene terephthalate (PET, 73.70%), polyamide-66 (PA-66, 15.54%), polyvinyl chloride (PVC, 9.69%), and polyethylene (PE, 1.07%). Most importantly, the concentration of microplastics in arteries containing atherosclerotic plaques, both coronary arteries (156.50 ± 42.14 vs. 76.26 ± 14.86 µg/g tissue, P = 0.039), and carotid arteries (133.37 ± 60.52 vs. 76.26 ± 14.86 µg/g tissue, P = 0.015), was significantly higher than that in aortas which did not contain atherosclerotic plaques, suggesting that microplastics might be associated with atherosclerosis in humans. This study provides valuable data for further hazard assessments of microplastics on human cardiovascular health.


Assuntos
Aterosclerose , Placa Aterosclerótica , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/análise , Pirólise , Artérias/química , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/química
18.
Environ Sci Pollut Res Int ; 31(16): 24250-24262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436847

RESUMO

Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu(II) were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics, and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu(II) was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.


Assuntos
Gado , Esterco , Animais , Temperatura , Pirólise , Carvão Vegetal/química , Substâncias Húmicas/análise , Proteínas
19.
Water Res ; 254: 121397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461599

RESUMO

Municipal wastewater treatment plants (WWTPs) play a crucial role in the collection and redistribution of plastic particles from both households and industries, contributing to their presence in the environment. Previous studies investigating the levels of plastics in WWTPs, and their removal rates have primarily focused on polymer type, size, shape, colour, and particle count, while comprehensive understanding of the mass concentration of plastic particles, particularly those <1 µm (nanoplastics), remains unclear and lacking. In this study, pyrolysis gas chromatography-mass spectrometry was used to simultaneously determine the mass concentration of nine selected polymers (i.e., polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), nylon 6, nylon 66, polyvinylchloride (PVC), poly(methyl methacrylate) (PMMA) and polycarbonate (PC)) below 1 µm in size across the treatment processes or stages of three WWTPs in Australia. All the targeted nanoplastics were detected at concentrations between 0.04 and 7.3 µg/L. Nylon 66 (0.2-7.3 µg/L), PE (0.1-6.6 µg/L), PP (0.1-4.5 µg/L), Nylon 6 (0.1-3.6 µg/L) and PET (0.1-2.2 µg/L), were the predominant polymers in the samples. The mass concentration of the total nanoplastics decreased from 27.7, 18 and 9.1 µg/L in the influent to 1, 1.4 and 0.8 µg/L in the effluent, with approximate removal rates of 96 %, 92 % and 91 % in plants A, B and C, respectively. Based on annual wastewater effluent discharge, it is estimated that approximately 24, 2 and 0.7 kg of nanoplastics are released into the environment per year for WWTPs A, B and C, respectively. This study investigated the mass concentrations and removal rates of nanoplastics with a size range of 0.01-1 µm in wastewater, providing important insight into the pollution levels and distribution patterns of nanoplastics in Australian WWTPs.


Assuntos
Caprolactama/análogos & derivados , Polímeros , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Microplásticos , Nylons , Pirólise , Cromatografia Gasosa-Espectrometria de Massas , Austrália , Plásticos/análise , Polipropilenos/análise , Polimetil Metacrilato , Polietilenos , Poluentes Químicos da Água/química , Monitoramento Ambiental
20.
Waste Manag ; 179: 77-86, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461626

RESUMO

In response to the escalating global challenge of mounting plastic waste and the imperative to adopt more sustainable practices for resource utilization, our study focuses on the utilization of plastic solid waste (PSW) through a two-stage thermal pyrolysis process. This aims to demonstrate its potential as a high-performance alternative to existing two-stage catalytic pyrolysis methods. The experimentation involved processing real scrap PSW material in a lab-scale batch set-up, emphasizing optimizing residence time in the cracking reactor to maximize gas yield and its lower heating value (LHV). The study underscores the advantages of the employed two-stage thermal pyrolysis apparatus through a comparative analysis with established set-up dedicated to maximizing gas yield. Once the operative conditions were explored, resulting pyrolysis products underwent detailed characterization to assess their suitability as a sustainable fuel source. The study also presents a practical application of the produced gaseous fuel, envisioning its combustion in an internal combustion engine (ICE), known for its flexibility regarding fuel properties. This application is demonstrated through a simulation conducted in Unisim Design©. The successful processing of real PSW material in the two-stage lab-scale experimental set-up showcased optimal gas yield achievements (>65 % w/w) with an LHV (∼41 MJ/kg), comparable to that of natural gas. This emphasizes the potential of these sustainable alternatives to replace fossil fuels, especially in the context of ICE applications. The integration of the pyrolysis plant with an ICE demonstrated promising prospects for generating electricity in the transportation sector and facilitating thermal power for heat integration in pyrolysis reactors.


Assuntos
Pirólise , Resíduos Sólidos , Temperatura Alta , Catálise , Gás Natural , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...